Analyse du Lean dans des environnements de production à grande variété et faible volume : Etude des limites dans le contexte de la fabrication de grues à tour
Mots-clés :
Environnements HMLV, Kanban, Lean manufacturing, Limites du Lean, SMEDRésumé
Le Lean, initialement développé pour les environnements à fort volume de production et faible variété de produits, est de plus en plus adopté dans des contextes à grande variété et faible volume. Mais ces environnements diffèrent des conditions d'origine du Lean. La littérature reflète trois courants de pensée divergents : Lean universel, Lean adaptable ou Lean inadapté. Cette étude, menée dans une entreprise de fabrication de grues, montre les limites de certaines pratiques Lean, notamment le travail standardisé, inefficace face à une grande diversité de produits. Le chantier pilote du Kanban a entraîné une baisse de productivité de 22%, tandis que le SMED, bien qu'ayant réduit le temps de changement de série de 32%, s'est révélé peu ergonomique. L'étude souligne l'importance d'adapter les pratiques Lean à ces environnements.
Références
Abu, F., Gholami, H., Saman, M. Z. M., Zakuan, N., & Streimikiene, D. (2019). The implementation of lean manufacturing in the furniture industry: A review and analysis on the motives, barriers, challenges, and the applications. Journal of Cleaner Production, 234, 660–680. https://doi.org/10.1016/j.jclepro.2019.06.279
Adlin, N., Nylund, H., Lanz, M., Lehtonen, T., & Juuti, T. (2020). Lean indicators for small batch size manufacturers in high-cost countries. Procedia Manufacturing, 51, 1371-1378. https://doi.org/10.1016/j.promfg.2020.10.191
Aljubiri A. (2019). An implementation strategy for Lean Manufacturing in high mix and low volume (HMLV) environment (Doctoral dissertation, University of Akron). http://rave.ohiolink.edu/etdc/view?acc_num=akron1564787755980795
Amrani A., Ducq Y. (2020). Lean practices implementation in aerospace based on sector characteristics: methodology and case study. Production Planning & Control, 31(16), 1313-1335. https://doi.org/10.1080/09537287.2019.1706197
Antony J., Psomas E., Garza-Reyes J. A., Hines P. (2021). Practical implications and future research agenda of lean manufacturing: a systematic literature review. Production planning & control, 32(11), 889-925. https://doi.org/10.1080/09537287.2020.1776410
Bayhan, H. G., Demirkesen, S., & Jayamanne, E. (2019, February). Enablers and barriers of lean implementation in construction projects. In IOP Conference Series: Materials Science and Engineering (Vol. 471, No. 2, p. 022002). IOP Publishing. https://doi.org/10.1088/1757-899X/471/2/022002
Beauvallet, G., & Houy, T. (2009). L'adoption des pratiques de gestion lean. Revue française de gestion, 197(7), 83-106. https://shs.cairn.info/revue-francaise-de-gestion-2009-7-page-109?lang=fr
Birkie, S. E., Trucco, P., & Kaulio, M. (2017). Sustaining performance under operational turbulence: the role of lean in engineer-to-order operations. International Journal of Lean Six Sigma, 8(4), 457-481. https://doi.org/10.1108/IJLSS-12-2016-0077
Birkie, S. E., & Trucco, P. (2016). Understanding dynamism and complexity factors in engineer-to-order and their influence on lean implementation strategy. Production Planning & Control, 27(5), 345-359. https://doi.org/10.1080/09537287.2015.1127446
Braglia M., Gabbrielli R., Marrazzini L. (2020). Rolling Kanban: a new visual tool to schedule family batch manufacturing processes with Kanban. International Journal of Production Research, 3998–4014. https://doi.org/10.1080/00207543.2019.1639224
Braglia, M., Di Paco, F., Frosolini, M., & Marrazzini, L. (2023). Quick changeover design: a new Lean methodology to support the design of machines in terms of rapid changeover capability. Journal of Manufacturing Technology Management, 34(9), 84-114. https://doi.org/10.1108/JMTM-12-2022-0430
Buer, S. V., Fragapane, G. I., & Strandhagen, J. O. (2018). The data-driven process improvement cycle: Using digitalization for continuous improvement. IFAC-PapersOnLine, 51 (11), 1035–1040. https://doi.org/10.1016/j.ifacol.2018.08.471
Cannas, V. G., Pero, M., Pozzi, R., & Rossi, T. (2018). Complexity reduction and kaizen events to balance manual assembly lines: an application in the field. International Journal of Production Research, 56(11), 3914-3931. https://doi.org/10.1080/00207543.2018.1427898
Chanegrih, T., & Creusier, J. (2015). Le lean manufacturing dans l'industrie française : états des lieux et implications pratiques. Revue française de gestion industrielle, 34(4), 59-71. https://doi.org/10.53102/2015.34.04.831 [RFGI]
Chaple A. P., Narkhede B. E. (2017). Value stream mapping in a discrete manufacturing: A case study. International Journal of Supply Chain Management, 6 (1), 55–67. https://doi.org/10.59160/ijscm.v6i1.1353
Cherrafi, A., Elfezazi, S., Garza-Reyes, J. A., Benhida, K., & Mokhlis, A. (2017). Barriers in Green Lean implementation: a combined systematic literature review and interpretive structural modelling approach. Production Planning & Control, 28(10), 829-842. https://doi.org/10.1080/09537287.2017.1324184
Crute, V., Ward, Y., Brown, S., & Graves, A. (2003). Implementing Lean in aerospace—challenging the assumptions and understanding the challenges. Technovation, 23(12), 917-928. https://doi.org/10.1016/S0166-4972(03)00081-6
Dallasega, P., Rojas, R. A., Bruno, G., & Rauch, E. (2019). An agile scheduling and control approach in ETO construction supply chains. Computers in Industry, 112, 103122. https://doi.org/10.1016/j.compind.2019.08.003
Danese P., Manfè V., & Romano P. (2018). A Systematic Literature Review on Recent Lean Research: State-of-the-art and Future Directions. International Journal of Management Reviews, 20(2), 579–605. https://doi.org/10.1111/ijmr.12156
Derrouiche, R., Lamouri, S., & Naoui-Outini, F. (2022). Supply Chain 4.0: rôles et opportunités de la gestion industrielle. Revue Française De Gestion Industrielle, 36(1), 3-6. https://doi.org/10.53102/2022.36.01.1112
Dora, M., Kumar, M., & Gellynck, X. (2016). Determinants and barriers to lean implementation in food-processing SMEs–a multiple case analysis. Production Planning & Control, 27(1), 1-23. https://doi.org/10.1080/09537287.2015.1050477
Duret, R. (2016). De l'émergence des risques à leur intégration dans une organisation : le cas del'industrie de la construction (Doctoral dissertation, Paris 1). Paris. https://theses.hal.science/tel-01816348
Gallego-García, S., Groten, M., & Halstrick, J. (2022). Integration of improvement strategies and industry 4.0 Technologies in a dynamic evaluation model for target-oriented optimization. Applied Sciences, 12(3), 1530. https://doi.org/10.3390/app12031530
Gan, Z. L., Musa, S. N., & Yap, H. J. (2023). A review of the high-mix, low-volume manufacturing industry. Applied Sciences, 13(3), 1687. https://doi.org/10.3390/app13031687
Gill, H., Lopus, M., & Camelon, K. (2008). Overcoming supply chain management challenges in a very high mix, low volume and volatile demand manufacturing environment. https://fabrinet.com/wpcontent/uploads/2017/03/LEAN-Manufacturing_Paper.pdf._Gill.-Sept.-08.pdf
Groten, M., & Gallego-García, S. (2021). A systematic improvement model to optimize production systems within industry 4.0 environments: A simulation case study. Applied Sciences, 11(23), 11112. https://doi.org/10.3390/app112311112
Hong, J., Liao, Y., Zhang, Y., & Yu, Z. (2019). The effect of supply chain quality management practices and capabilities on operational and innovation performance: Evidence from Chinese manufacturers. International Journal of Production Economics, 212, 227-235. https://doi.org/10.1016/j.ijpe.2019.01.036
Hussain A., Munive-Hernandez J. E., Campean I. F. (2020). Lean approach in a high mix, low volume manufacturing environment-case study. In: Proceedings of the International Conference on Industrial Engineering and Operations Management, 837-844. http://hdl.handle.net/10454/18203
Irani, S. A. (2020). Job shop lean: an industrial engineering approach to implementing lean in high-mix low-volume production systems. CRC Press. https://doi.org/10.4324/9781003034186
Junior, R. G. P., Inácio, R. H., da Silva, I. B., Hassui, A., & Barbosa, G. F. (2022). A novel framework for single-minute exchange of die (SMED) assisted by lean tools. The International Journal of Advanced Manufacturing Technology, 119(9-10), 6469-6487. https://doi.org/10.1007/s00170-021-08534-w
King, P. L. (2019). Lean for the process industries: dealing with complexity. CRC Press. https://doi.org/10.4324/9780429400155
Kjersem, K., Halse, L. L., Kiekebos, P., & Emblemsvåg, J. (2015). Implementing lean in engineer-to-order industry: a case study. In Advances in Production Management Systems: Innovative Production Management Towards Sustainable Growth: IFIP WG 5.7 International Conference, APMS 2015, Tokyo, Japan, September 7-9, 2015, Proceedings, Part II 0 (pp. 248-255). Springer International Publishing. https://inria.hal.science/hal-01431102v1
Kocsi, B., Matonya, M. M., Pusztai, L. P., & Budai, I. (2020). Real-time decision-support system for high-mix low-volume production scheduling in industry 4.0. Processes, 8(8), 912. https://doi.org/10.3390/pr8080912
Leksic, I., Stefanic, N., & Veza, I. (2020). The impact of using different lean manufacturing tools on waste reduction. Advances in Production Engineering & Management, 15(1). https://doi.org/10.14743/apem2020.1.351
Leonardo, D. G., Sereno, B., Silva, D. S. A. D., Sampaio, M., Massote, A. A., & Simões, J. C. (2017). Implementation of hybrid Kanban-CONWIP system: A case study. Journal of Manufacturing Technology Management, 28(6), 714-736. https://doi.org/10.1108/JMTM-03-2016-0043
Liker J. K. (2004): The Toyota way – 14 management principles from the world’s greatest manufacturer, McGraw-Hill, New York.
Lopes, N. R., Filho, M. G., Ganga, G. M. D., Tortorella, G. L., Callefi, M. H. B. M., & Lima, B. T. D. (2023). Critical factors for sustaining lean manufacturing in the long-term: a multi-method study. European Journal of Industrial Engineering, 17(1), 60-89. https://doi.org/10.1504/EJIE.2023.127740
Matt, D. T., Rauch, E., & Dallasega, P. (2014). Mini-factory–a learning factory concept for students and small and medium sized enterprises. Procedia CIRP, 17, 178-183. https://doi.org/10.1016/j.procir.2014.01.057
Mrabbaj, Z., Masmoudi, M., Messaoudene, Z., Penz, B., & Depale, B. (2024, November). Digital Lean Practices in High-Mix, Low-Volume Manufacturing: A Case Study of Manitowoc. In 2024 IEEE International Conference on Technology Management, Operations and Decisions (ICTMOD) (pp. 1-6). IEEE. https://doi.org/10.1109/ICTMOD63116.2024.10878216
Normand, A., & Bradley, T. H. (2024). An experimental investigation of Lean Six Sigma philosophies in a high-mix low-volume manufacturing environment. PloS one, 19(5), e0299498. https://doi.org/10.1371/journal.pone.0299498
Ohno T (1988). Toyota production system: beyond large-scale production. Productivity Press, Oregon (USA). https://doi.org/10.4324/9780429273018
Pearce A., Pons D., Neitzert T. (2018). Implementing lean—Outcomes from SME case studies. Operations Research Perspectives, 5, 94-104. https://doi.org/10.1016/j.orp.2018.02.002
Pekarcikova, M., Trebuna, P., Kliment, M., & Dic, M. (2021). Solution of bottlenecks in the logistics flow by applying the kanban module in the tecnomatix plant simulation software. Sustainability, 13(14), 7989. https://doi.org/10.3390/su13147989
Powell D. J. (2018). Kanban for lean production in high mix, low volume environments. IFAC-PapersOnLine, 51(11), 140-143. https://doi.org/10.1016/j.ifacol.2018.08.248
Psarommatis, F., Prouvost, S., May, G., & Kiritsis, D. (2020). Product quality improvement policies in industry 4.0: characteristics, enabling factors, barriers, and evolution toward zero defect manufacturing. Frontiers in Computer Science, 2, 26. https://doi.org/10.3389/fcomp.2020.00026
Rossini, M., Audino, F., Costa, F., Cifone, F. D., Kundu, K., & Portioli-Staudacher, A. (2019). Extending lean frontiers: a kaizen case study in an Italian MTO manufacturing company. The International Journal of Advanced Manufacturing Technology, 104, 1869-1888. https://doi.org/10.1007/s00170-019-03990-x
Rossini, M., Cifone, F. D., Kassem, B., Costa, F., & Portioli-Staudacher, A. (2021). Being lean: how to shape digital transformation in the manufacturing sector. Journal of Manufacturing Technology Management, 32(9), 239-259. https://doi.org/10.1108/JMTM-12-2020-0467
Schulze, F., & Dallasega, P. (2023). Barriers to lean implementation in engineer-to-order manufacturing with subsequent assembly on-site: state of the art and future directions. Production Planning & Control, 34(1), 91-115. https://doi.org/10.1080/09537287.2021.1888159
Schulze, F., & Dallasega, P. (2020). Industry 4.0 concepts and lean methods mitigating traditional losses in engineer-to-order manufacturing with subsequent assembly on-site: a framework. Procedia Manufacturing, 51, 1363-1370. https://doi.org/10.1016/j.promfg.2020.10.190
Selimović, I. (2022). Advantages and Disadvantages of Principles of Scientific Management and Lean Organisation. Challenges of the Future, 7(1). https://doi.org/10.37886/ip.2022.001
Seth, D., Seth, N., & Dhariwal, P. (2017). Application of value stream mapping (VSM) for lean and cycle time reduction in complex production environments: a case study. Production Planning & Control, 28(5), 398-419. https://doi.org/10.1080/09537287.2017.1300352
Shingo, S. (2019). A revolution in manufacturing: the SMED system. Routledge. https://doi.org/10.4324/9781315136479
Siong, B. C., Eng, C. K., & Teknikal, U. (2018). Implementing Quick Response Manufacturing to Improve Delivery Performance in an ETO Company. International Journal of Engineering & Technology, 7(2.28), 38-46. http://dx.doi.org/10.14419/ijet.v7i2.28.12879
Slomp, J., Bokhorst, J. A., & Germs, R. (2009). A lean production control system for high-variety/low-volume environments: a case study implementation. Production Planning and Control, 20(7), 586-595. https://doi.org/10.1080/09537280903086164
Suri, R. (2010). It's about time: the competitive advantage of quick response manufacturing. CRC Press.
Tahmina, T., Garcia, M., Geng, Z., & Bidanda, B. (2022). A Survey of Smart Manufacturing for High-Mix Low-Volume Production in Defense and Aerospace Industries. Flexible Automation and Intelligent Manufacturing: The Human-Data-Technology Nexus: Proceedings of FAIM 2022, June 19–23, 2022, Detroit, Michigan, USA, 237-245. https://doi.org/10.1007/978-3-031-18326-3_24
Tezel, A., Taggart, M., Koskela, L., Tzortzopoulos, P., Hanahoe, J., & Kelly, M. (2020). Lean construction and BIM in small and medium-sized enterprises (SMEs) in construction: a systematic literature review. Canadian Journal of Civil Engineering, 47(2), 186-201. https://doi.org/10.1139/cjce-2018-0408
Tomašević, I., Stojanović, D., Slović, D., Simeunović, B., & Jovanović, I. (2021). Lean in High-Mix/Low-Volume industry: a systematic literature review. Production Planning & Control, 32(12), 1004-1019. https://doi.org/10.1080/09537287.2020.1782094
Van Goubergen, D., & Van Landeghem, H. (2002). Rules for integrating fast changeover capabilities into new equipment design. Robotics and computer-integrated manufacturing, 18(3-4), 205-214. https://doi.org/10.1016/S0736-5845(02)00011-X
Villar-Fidalgo, L., Espinosa Escudero, M. D. M., & Domínguez Somonte, M. (2019). Applying kaizen to the schedule in a concurrent environment. Production Planning & Control, 30(8), 624-638. https://doi.org/10.1080/09537287.2019.1566281
Wang, S. S., Chiou, C. C., & Luong, H. T. (2019, August). Application of SMED methodology and scheduling in high-mix low volume production model to reduce setup time: A case of s company. In IOP Conference Series: Materials Science and Engineering (Vol. 598, No. 1, p. 012058). IOP Publishing. https://doi.org/10.1088/1757-899X/598/1/012058
Womack, J. P., & Jones, D. T. (1997). Lean thinking—banish waste and create wealth in your corporation. Journal of the Operational Research Society, 48(11), 1148-1148. 159. https://doi.org/10.1057/palgrave.jors.2600967
Womack, J. P., Jones, D. T., & Roos, D. (2007). The machine that changed the world: The story of lean production--Toyota's secret weapon in the global car wars that is now revolutionizing world industry. Simon and Schuster.
Yassine, T., Bacha, M. B. S., Fayek, F., & Hamzeh, F. (2014, June). Implementing takt-time planning in construction to improve workflow. In Proc. 22nd Ann. Conf. of the Int’l Group for Lean Construction (pp. 23-27).
Yusoof, M. Y. M., Mohamed, N. M. Z. N., & Mustapah, M. M. (2022). The effect of the supply chain in the quick response manufacturing (QRM) environment in the automotive industry. Procedia Computer Science, 207, 2116-2124. https://doi.org/10.1016/j.procs.2022.09.271
Zhang, B., Niu, Z., & Liu, C. (2020). Lean tools, knowledge management, and lean sustainability: The moderating effects of study conventions. Sustainability, 12(3), 956. https://doi.org/10.3390/su12030956
Numéro
Téléchargements
Comment citer
Rubrique
Licence
(c) Tous droits réservés Revue Française de Gestion Industrielle 2026

Ce travail est disponible sous licence Creative Commons Attribution - Pas d’Utilisation Commerciale 4.0 International.

