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Abstract: Transport systems place a key role in the development of the economic growth of countries. 
However, the appearance of autonomous and electric vehicles and the restrictions put in place to limit the 
diffusion and impacts of Covid-19ain public transport have had particularly a widespread impaction transport 
problems in particular at junctions. The present research helps to address these problems. This paper is 
concerned with stochastic traffic flow modeling on road networks, thanks to macroscopic models that belong 
to the so-called generic class of second order models: the GSOM family. It has been shown that such higher 
order models can be solved in a Lagrangian framework whose coordinates move with the traffic. The difficulty 
to use this resolution trick on a network is to deal with Eulerian– fixed –discontinuities such as junctions. The 
aim of this work is two-fold: first, to propose adapted junction models for stochastic second order macroscopic 
traffic flow models and second, to solve the resulting model in a moving framework. Some numerical examples 
are provided to show the efficiency of the approach. 
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Modélisation stochastique macroscopique d'ordre supérieur du trafic sur les 

réseaux routiers : implications managériales 

Résumé : Les systèmes de transport jouent un rôle primordial dans le développement de la croissance 
économique des pays. Cependant, l'apparition des véhicules autonomes et électriques et les restrictions mises 
en place pour limiter la diffusion et les impacts du Covid-19 dans les transports en commun ont eu un impact 
important sur l’augmentation des problèmes de transport notamment aux intersections. Le présent papier 
aide à résoudre ces problèmes. Cet article s'intéresse à la modélisation stochastique des flux du trafic sur les 
réseaux routiers, grâce à des modèles macroscopiques génériques de second ordre : la famille GSOM. Il a été 
montré que de tels modèles d'ordre supérieur peuvent être résolus dans un cadre lagrangien dont les 
coordonnées lagrangiennes se déplacent avec le trafic. La difficulté d'utiliser cette solution de résolution sur 
un réseau est de traiter les discontinuités eulériennes – fixes – telles que les jonctions. L'objectif de ce travail 
est double : d'une part, proposer des modèles d’intersection adaptés aux modèles stochastiques 
macroscopiques de flux de trafic de second ordre, et d'autre part, résoudre le modèle résultant dans le cadre 
d’un réseau routier. Quelques exemples numériques sont fournis pour montrer l'efficacité de l'approche 
proposée. 
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1. INTRODUCTION 

Transportation modeling determines the efficiency 

of moving products. The progress in techniques 

improves the reduction of congestion, delivery 

speed, service quality and energy saving in a context 

of sustainable development. 

Transportation modeling takes a crucial part in the 

manipulation of logistic. In this paper, we are 

motivated by road traffic network modeling. 

Classically, traffic models can be divided into two 

categories: either microscopic or macroscopic 

models. Microscopic models describe the 

spatiotemporal behaviour of each particle or vehicle 

and their interactions, whereas macroscopic models 

describe collective properties without distinguishing 

individual particles.  

Traffic flow models, whether macroscopic or 

microscopic, cannot provide a perfect 

representation of the physical reality. Some 

processes are neglected under the assumption they 

are negligible, others are unknowable. Even for 

those processes which are well understood, the 

collectable data may be insufficient for proper 

model identification. Finally, there are always 

stochastic perturbations affecting the flow of traffic, 

due to random behaviour of drivers 

(acceleration/deceleration, lane change...), the 

intrinsic stochastic character of driver interaction as 

various phenomena attest (spontaneous jam 

formation, traffic breakdown…etc) or to outside 

perturbations. 

All these sources of errors and imperfections may be 

integrated into traffic models as stochastic 

perturbations. Driver behaviour is partly stochastic, 

a feature which is largely accounted for in most 

microscopic models. 

The aim of this proposed paper is to develop a 

macroscopic traffic flow model for networks 

endowed with a tractable stochastic component. 

This model is compatible with both microscopic and 

macroscopic descriptions, and satisfies classical 

constraints coming from the engineering world, as 

for instance the invariance principle. The key idea 

for conciliating both microscopic and macroscopic 

representations is to recast the considered 

macroscopic model using the Lagrangian 

coordinates. Indeed, the Lagrangian framework 

focuses directly on the particles and incidentally it 

allows to keep track of individual behaviours 

(Leclercq et al., 2007).  

A growing literature is devoted to stochastic 

modelling. Kinetic models generally contain 

stochastic components (lane change, desired 

distributions, etc) which are integrated and become 

deterministic elements of the model (refer to 

(Ngoduy, 2006) and the references therein). 

Similarly, some first order models such as SSMT 

(Lebacque, 1984) contain integrated stochastic 

building blocks (for instance conflicts between 

movements in intersections). 

Other efforts have aimed at modeling directly some 

stochastic processes of traffic flow (Dundon & 

Sopasakis, 2007; Kühne & Mahnke, 2005). Some 

models are based on exclusion processes, such as 

(Dundon & Sopasakis, 2007) and (Sopasakis & 

Katsoulakis, 2006). The model (Tordeux et al., 2013) 

combines exclusion processes with a space-time 

discretization of the LWR model, the min formula 

for traffic supply and demand (Lebacque, 1996) 

providing jump probabilities. (Jabari & Liu, 2012) 

and (Jabari & Liu, 2013) follow on (Kim & Zhang, 

2008) to propose a model based on the randomness 

of driver gap choice, and consistent with the LWR 

model. (Hoogendoorn et al., 2007) proposes a 

model of propagation of the probability of traffic 

breakdown along characteristic curves. (Boel & 

Mihaylova, 2006; Sumalee et al., 2011; Wang et al., 

2007) propose stochastic perturbations of 

discretized macroscopic models. (Wang et al., 2007) 

further introduces an identification and traffic 

management scheme based on the stochastic 

approach. 

Very few researches have introduced directly 

stochastic processes into macroscopic equations of 

traffic flow (Weits, 1992) for an early model). The 

main difficulties are computational intractability 

and diffusive effects. The model described in this 

paper introduces a model which is non-diffusive, 

tractable numerically, and readily interpretable 

from a physical point of view. 
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The stochastic model we propose in this work is 

based on the GSOM (Generic Second Order Traffic 

Modelling) family of models introduced in (Khelifi et 

al., 2017; Khelifi et al., 2015; Lebacque et al., 2007). 

The GSOM family of models generalizes the LWR 

(Lighthill-Whitham-Richards) model (Lighthill & 

Whitham, 1955; Richards, 1956) and encompasses 

many other macroscopic models. Refer to 

(Lebacque & Khoshyaran, A2013) for examples. 

GSOM models combine a conservation equation for 

the density (accounting for kinematic waves in 

traffic) with a system of conservation laws for the 

behavioural attributes of individual cars and drivers, 

such as vehicle type, aggressiveness, destination, 

information flow to and from a vehicle, etc.  

The main idea of the paper is that random 

perturbation affects vehicle dynamics indirectly, by 

affecting the driver behaviour. Thus, random 

perturbations will be described by a specific driver 

attribute. Since this attribute is Lagrangian, its 

dynamics can be described by a stochastic 

differential equation in Lagrangian coordinates. This 

property, combined with the properties of GSOM 

models, ensures the tractability of the model, 

although it is expressed as a system of stochastic 

partial differential equations in Eulerian 

coordinates.  

The article is organized as follows. Section 2 explore 

the theoretical and practical traffic management 

implications. In Section 3, the generic class of 

second order macroscopic traffic flow models called 

GSOM family is introduced. In section 4, we discuss 

the stochastic GSOM model. In Section 5, we briefly 

review and discuss the literature for solving GSOM 

models posed on junctions. Our aim is to show that 

the Lagrangian framework is well-suited for 

designing the solution to GSOM problems even if 

incorporating discontinuities. The complete 

numerical methodology on junction is described in 

Section 5 and some numerical examples are given. 

Finally, we provide some conclusions on this work 

and give some insights on future research in Section 

6. 

2. GSOM FAMILY 

2.1 Specification of GSOM models 

First order traffic flow models, such as the seminal 

LWR model standing for (Lighthill, &AWhitham, 

1955; Richards, 1956) have been used for quite a 

long time for modelling traffic flows on networks 

(Garavello & Piccoli, 2006; Lebacque & Khoshyaran, 

2005) for respectively mathematical and 

engineering reviews). However, first order models 

generally fail to recapture accurately specific and 

meaningful traffic flow phenomena such as stop-

and-go waves, the capacity drop or the bounded 

acceleration. Indeed, first order models assume that 

every driver behaves in the same fashion that does 

not allow to reproduce phenomenon created by the 

variability of the drivers. Thus, we focus here on the 

Generic Second Order Models (GSOM) family 

(Lebacque et al., 2005; Lebacque et al., 2007). 

The main GSOM variables are: time t , position x , 

density  , flow q , speed v , and attribute I  (it can 

be related to the type of vehicle, driver behaviour, 

origin/destination…). 

The GSOM model combines the conservation 

equation with the fundamental diagram of specific 

driver behaviour attribute.  

The model can be stated in conservation form as 

follows: 

( )

  

C

F

( ) 0

( ) ( ) 0 

,

Conservation of vehicules

onservation of  I

undamental diagram (FD), dependent on I

v
t x

I Iv   
t x

v I

x

t

 

 



 +  =

 +  =


= 

 

 (1) 

I  is a Lagrangian driver attribute that characterizes 

the behaviour of each driver. It is preserved along 

the trajectories of vehicles, a result in harmony with 

the fact that contact discontinuities waves 

propagate discontinuities of I  to the speed.  

The GSOM family encompasses a large variety of 

higher order traffic flow models such as the LWR 

model itself which is simply a GSOM model with no 

specific driver attribute, the LWR model with 

bounded acceleration (Lebacque & Khoshyaran, 

2002; Lebacque, 2003; Leclercq et al., 2007), the 
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ARZ model (AwAand Rascle, 2000; Zhang,A2002), 

the Generalized ARZ model proposed in (Fan et al., 

2013) as a special case of (Zhang et al., 2009), the 

multi-commodity models (multi-class, multi-lanes) 

(Bagnerini & Rascle, 2003; Herty et al., 2008; Jin & 

Zhang, 2004; Klar et al., 2003), theAColomboA1-

phaseAmodel (Lebacque et al., 2005; Lebacque et 

al., 2007) or the stochastic GSOM model 

(Khoshyaran & Lebacque, 2009). 

GSOM models have been already well studied on 

homogeneous sections but they have attracted little 

attention for their implementation on junctions. 

However, junctions are the main source of 

congestion for traffic streams on a network. 

2.2 Lagrangian expression of the GSOM family 

The common expression of GSOM models in 

Eulerian coordinates ( ),t x  is given by equation (1). 

However, it is well-known that Lagrangian 

framework ( ),t n  is particularly convenient for 

dealing with flows of particles and it is especially 

true in traffic flow modeling (see (Leclercq et al., 

2007; Van Wageningen-Kessels et al., 2013) and 

references therein). 

The first fundamental variable of the Lagrangian 

GSOM model is the number of cumulated vehicles

 . This variable is supplemented by a second 

variable which is the time T . 

Considering that ( )nx t  the trajectory of the nth 

vehicle, the Lagrangian form of the GSOM model is 

given by:  

( ) ( ) ( )

( )
( ) ( )

( )

( ) ( ) ( )( )

1

.

,

.

n n n

n n

n n

n n n

x t t x t t v t

x t x t
v t I t

N

I t t I t t I t

−

 +  = + 

 − 

=  
 


+  = + 

 

 (2) 

 

Where ( )( ) ( )n nI t I t = −  and ( )nI t  represents the 

invariant associated to the nth vehicle.  

In the second case, the appropriate numerical 

scheme is defined as follows: 

( ) ( ) ( ) ( )( )

( ) ( ) ( )( )

( ) ( ) ( )( )

1.

,

.

n n n n

n n n

n n n

t
r t t r t v t v t

N

v t r t I t

I t t I t t I t

−


+  = + − 


= 


+  = + 



 

 (3) 

Where r  is the discrete particle spacing. Then the 

scheme shown in Equation (3) is deduced from 

Equation (2). Note that both schemes are first order 

schemes. The first discrete model (Equation (2)) is 

an explicit Euler scheme and the second scheme 

(Equation (3)) can be interpreted as the seminal 

Godunov scheme (see (Godunov, 1959)) applied 

with demand and supply. 

3. THE STOCHASTIC GSOM MODEL 

3.1 Specification of stochastic GSOM model 

The fundamental idea of the model is to consider 

the driver attribute I as a variable which is 

stochastic, as the result of random interactions of 

the driver with other drivers.  

The dynamics of the attribute I are described as 

follows: 

, td
I I

dt


 
=  

 
 

 (4) 

t
 is a Brownian process (and 

  
def

t
t

d
W

dt


=

 the 

corresponding white noise process). 

The resulting stochastic model in natural ( ),x t  

coordinates can be stated as: 

( )

( )

  

C

( ) 0

( ) ( ) ,  

,

 

Conservation of vehiculest x

onservation of   I t x t

FD dependent on I

v

I Iv I W

v I

 

  



 +  =

 +  =


= 

 

 (5) 

The driver attribute includes two components, each 

of which can be a vector: 

- a stochastic component, which will express 

the impact of random perturbations, the 

impact of the imperfections of the 

modelling process, and the error process 

affecting various parameters of the model 

(case of a model identification or traffic 

control problem). 
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- a deterministic component, which will have 

the usual interpretation of GSOM driver 

attributes (the propensity to more or less 

aggressive behaviour, the driver 

destination, the driver class, the parameters 

of the fundamental diagram, or a parameter 

controlling the relaxation of traffic towards 

some reference dynamics). 

3.2 Lagrangian expression of the stochastic 

GSOM model 

Let us introduce Lagrangian coordinates, N  the 

vehicle index and T  the time, and let 1
def

r =  

denote the spacing. I  is a random variable 

depending on the vehicle index N  (it is a driver 

attribute) and on the random event 
tW . 

In Lagrangian coordinates ( ),N T , the stochastic 

GSOM model (5) can be expressed as: 

( )

( )

( )

  

Dynamics 

Driver 

0

, ,   

, ,

0

, 0

Conservation of vehiculesT N

of  I T T

dependent FD

r v

I I W N  

v V r I N

r

I r







 +  =

 =


=

=



 

 (6) 

Note that ( ) ( ), 1 ,
def

V r I I= .  

The process I is described by the stochastic ordinary 

differential equation. 

( ), ,T TI I W N =  
 (7) 

and is assumed to be driven by the brownian motion 

t .  

The complete Godunov discretization is summarized 

in (Lebacque, J.P., and Khoshyaran, M.M., 2013) by: 

( ) ( ) ( )

( ) ( ) ( )( )

( ) ( )( )

1

,

1 , , ;

n n n

n n n

n n t

x t x t tv t

v t V r t I t

I t L I t t t t W

+ = + 

=

+ = + 

 

 (8) 

3.3 Example of stochastic GSOM model 

The simplest model for (4) is the linear model: 

( ), t tI W I W  = − +  
 (9) 

With   and   two parameters and   
def

t
t

d
W

dt


=  

the white noise process. The idea of expression (9) 

is: the dynamics of nI  results from two competing 

processes: a relaxation process and a white noise 

perturbation process. 

The expression of the semi-group L  is easily 

deduced: 

( )( ) ( ) ( )
( )

, 0, ; 0

0

t t sL I t t W dB We
t s t

tI e





− −= 

−+

 

 (10) 

The expression (10) defines the solution of (9) as an 

Ornstein-Uhlenbeck process for I (see the 

Godunov particle discretization in Lebacque & 

Khoshyaran, 2013). 

The CFL condition can be obtained by expressing 

that if the distance between particle n  and 1n−  is 

greater than the minimum headway ( )( )min nr I t , 

and it stays so after one iteration: 

( )( ) ( ) ( )( ) ( ) ( )min 1,n n n n nr I t tV r t I t x t x t−+   −  

The following constraints results, which is applied in 

the simulation runs in this paper: 

( )
( )

( )
min

min
*

*

1
Max

1 ,
r r I

I I I

r I r
t

R r I
 

 −  
 

 −
    

 
 

 (11) 

4. NETWORK MODELING BASED ON 

STOCHASTIC GSOM MODEL  

4.1 Review of the literature 

In this paper, we are motivated by road network 

modeling, thanks to stochastic GSOM models. First 

order traffic flow models have been used for quite a 

long time for modelling traffic flows on networks 

(see Garavello & Piccoli, 2006; Lebacque & 

Khoshyaran, 2002 for instance). In particular, the 

seminal LWR model standing for (Lighthill & 

Whitham, 1955; Richards, 1956) has been widely 

used. However, first order models do not allow to 

recapture accurately specific and meaningful traffic 

flow phenomena. Thus, we focus on the stochastic 

GSOM models family which encompasses a large 

variety of higher order traffic flow models. 
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Stochastic GSOM models have been already well 

studied on homogeneous sections but they have 

attracted little attention for their implementation 

on junctions, as it is discussed in this section. 

However, junctions are the main source of 

congestion for traffic streams on a network.  

There already exist a few works on the Lagrangian 

modeling of junctions based on GSOM models; see 

for instance (Khoshyaran &XLebacque, 2008; 

VanXWageningen-Kessels et al., 2013). However, 

some of these works are based on very specific 

examples extracted from the GSOM family. But it is 

not straightforward to extend the numerical 

methodologies presented in these papers to the 

stochastic GSOM model. In (Khoshyaran & 

Lebacque, 2008), the authors consider the Godunov 

scheme and extend this particle discretization to 

networks, addressing the problem of junction 

modeling through a supply-demand approach. The 

authors make the choice to introduce an internal 

state model (Khoshyaran & Lebacque, 2009; 

Lebacque et al., 2008) and assume that the particles 

share the same attribute once they have passed. 

The authors deal also with densities and flows which 

is not particularly convenient with GSOM models in 

the Lagrangian framework. Hopefully, dealing with 

spacing instead of density will ease the resolution of 

the model. While boundary conditions can be 

treated within the framework of supply-demand 

flows methodology (Khoshyaran &XLebacque, 2008; 

Lebacque et al., 2007), expressions of upstream and 

downstream boundary conditions into Lagrangian 

coordinates can be obtained in the framework of 

variational approach for GSOM models (Lebacque & 

Khoshyaran, 2013). It will be developed in this 

section. 

In order to model traffic on a network it is necessary 

to interface traffic flow on links and nodes. Our 

approach is to use an internal state node model 

(Lebacque & Khoshyaran, 2005; Lebacque, 2003). 

The node is viewed as a point (its physical dimension 

is neglected) but traffic inside the node is 

disaggregated per movement. Simple conservation 

and FIFO propagation processes describe the traffic 

dynamics per movements. 

Each node is endowed with behavioural properties 

which are expressed by node supplies and demands 

(Lebacque & Khoshyaran, 2013;XLebacque, 1996; 

Lebacque, 2003). These will be adapted to the 

stochastic context. The flow of traffic inside the 

node is discretized into particles as it is on links, 

which yields exact attribute dynamics. The driver 

attributes are averaged per movement for the 

estimation of these node supplies and demands. 

The node in- and out-flows are calculated according 

to the min formula for supplies and demand 

(Lebacque & Khoshyaran, 2005) and therefore the 

model satisfies the invariance principle. The in- and 

outflows are converted into particle dynamics, 

expanding on (Lebacque & Khoshyaran, 2013). Each 

node acts like a buffer between its upstream and 

downstream links which will be the subject of this 

section.   

4.2 Methodology for the Lagrangian 

modeling of nodes    

In Lagrangian, one may expect that the upstream 

demand is given by the speed of the next vehicle 

which will pass through the junction. The difficult 

point is that the speed is computed with respect to 

the spacing with the leader vehicle. If the leader 

vehicle gets into the junction, the following vehicle 

has no more leader vehicle. The idea is then to 

assume a point-wise junction model with an internal 

state (first introduced in Khoshyaran & Lebacque, 

2009) that is used as a buffer between incoming and 

outgoing branches of the junction. We recall that 

this buffer has internal dynamics and we can define 

an internal supply which depends on the number of 

stored vehicles. To solve the problem of defining a 

spacing when the leader vehicle has entered the 

junction point, we set a new speed function which 

only depends on the distance to the junction (which 

is assumed to contain the “fictitious” leader 

vehicle). We also need to particularly pay attention 

to the specific case of critr r  where critr  is the 

critical spacing under which speed is almost null. 

Indeed, in this case we would like to avoid to block 

vehicles which does not make sense if r  denotes 

the distance to the junction here. 

In this section, we describe the numerical scheme 

adapted for the generic stochastic GSOM model 
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(equation (8)) posed on junction. We set a junction 

as the union of incoming and outgoing links that 

intersect at a unique point called the junction point.  

In the beginning, it is necessary to converse the 

supply and demand functions classically expressed 

in Eulerian coordinates denoted respectively by 

and   into Lagrangian ones. In Eulerian, the passing 

flow q  is given by the minimum between upstream 

demand and downstream supply.  

For deducing a Lagrangian discretization of a traffic 

flow model on a junction, it is necessary to take into 

consideration different elements: 

- The link model, which is given by Equations 

((2) or (3)) and (8); 

- The upstream (resp. downstream) 

boundary conditions for any incoming (resp. 

outgoing) link; 

- The internal junction model, say the way 

particles are assigned from incoming road 

to outgoing road and eventually the internal 

dynamics of the junction point; 

- Link-junction and junction-link interfaces. 

These constituting elements are addressed in what 

follows. 

4.2.1 Downstream boundary condition 

Consider the downstream boundary of a given 

outgoing road j  located at 
Sx . The downstream 

boundary data at 
Sx  is given by the downstream 

supply t  at time step t . (n) is the last particle 

located on the link (or at least a fraction N  of it is 

still on the link, with 0 1  ). See (Figure 1). 

 

Figure 1: Downstream boundary conditions 
 

Let us define by 1nt −  the first time step following the 

exit of particle (n − 1) (for any n ≥ 2). It denotes the 

exit time of the end of the particle 1n− , say, the 

minimal time 1nt −  for which: 

1

t

n sx −   for any 
1nt t −  

It is noteworthy that the CFL condition (15) prevents 

that two vehicles (or more) exit the link in the same 

time step. 

Then, the algorithm is composed as follows: 

1. First, compute the spacing 
t

nr  associated to the 

particle (n) such as: 

1

t t
t n n

nr
N

 − −
=


 

where 
1nt t −=  and 1

t

n sx −   is the last position 

computed for the leader particle (n − 1). 

2. Then, initialize   as follows: 

n

n

t

S n

t

n

x

r N




−
=


 

While the particle (n) has not totally exited the link, 

i.e. while 
nt t , we redefine the spacing as follows: 

t
t S n

n

x
r

N





−
=


 

3. We have toXdistinguishXtwoXcases: 

• Either ( ),t t t t

n n nV r I r : in this case, the 

downstream supply is sufficient to 

accommodate the demand on the link and 

the spacing 
t

nr  computed at the previous 

step is conserved. 

• Or ( ),t t t t

n n nV r I r  (unmet demand): in this 

case, the demand on the link cannot be fully 

satisfied since the downstream supply limits 

the outflow. Then, we have to modify 
t

nr   by 

selecting the smallest root 
*r  (see (Figure 1)) 

of: 

( ), t t

nV r I r=  

It means that we select the solution 

corresponding to the congested phase (see 

Figure 1) and we update *

t

nr r .  

4. Finally, we update the position and the attribute 

of particle (n) using equation (8) 
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( ) ( ) ( )

( ) ( )( )

1

1 , , ;

n n n

n n t

x t x t tv t

I t L I t t t t W

+ = +


+ = +

 

5. One can face the two following cases: 

• if the particle (n) has not totally exited the 

link, say, if 
1t

n sx +  , then we need to 

update the fraction   as follows: 

( ),t t

n nt

n

t
V r I

r N
 


 −


 

and iterate on the time step 1t t +  and redo 

steps 2 to 4. 

• conversely, if the particle (n) has totally 

exited the link, say, if 
1t

n sx +  , then we 

need to update both the time step 

1t t +  and the particle index 1n n +  

and then restart at step 1. 

This ends the sub-routine for the treatment of a 

downstream boundary condition. 

4.2.2 Upstream boundary condition    

Consider the upstream boundary of a given 

incoming road i  located at position 
Ex . The 

upstream boundary data at 
Ex  is given by the 

discrete prescribed upstream demand t  at time 

step t . Let ( )n  be the last particle that has totally 

entered the link at time 
nt , with 1n  . Assume that 

( )1n nt t t= − +   for a 0 1n  . Set t  as the 

current time step and assume that nt t t  . Notice 

that we necessarily have 1t   since the particle (n), 

with 1n  , has already entered the link. 

Unlike for the downstream boundary condition 

where we know exactly the position of the last 

particle which has exited the link (Section 5.2.1), we 

do not know precisely the position of the next 

particle, labelled (n + 1), which will enter the link. 

Thus, we have to correctly compute the entry time 

of each particle (Figure 2). These entry times can be 

computed thanks to the effective cumulative flow at 

the upstream entry, denoted by tq  for any time in 

( ), 1t t t t +    . If one considers a fictitious 

junction model just upstream the entry point, in 

which particles are stored before being injected into 

the link whenever it is possible, then we can deduce 

a stock model which is similar to an internal junction 

model. 

Initially, the stock is equal to zero. 

 

Figure 2: Upstream boundary conditions 

Assume that the next particle (n + 1) will enter in the 

link at time ( )1 1n nt t t+ += +   for a 
10 1n +  . Let 

us introduce ( )0 1    the fraction of the particle 

(n + 1) which has already got into the ink at time step 

t  satisfying nt t t  . 

The algorithm is composed as follows: 

1. Instantiation: 

• Assume that the entry time 
nt  of particle (n) 

and the flow 1tq −
 on ( )1 ,t t t t−      are 

known. We initialize the fraction   as 

follows: 

( )1 nt
t t t

q
N

 −
 −

=


 

While the spacing 
1

t

nr +
 is given by: 

1

t

t n E

n

x
r

N




+

−
=


 

• We introduce the local supply immediately 

downstream the entry point 
Ex  as: 

1

1

1
, , ;t t t

loc n n Et

n

I I x
r

 +

+

 
=  

 
 

• We denote by tF  the number of particles 

stored inside the fictitious junction. 
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2. Stock model: The evolution of the stock tF  is 

given by: 

( )1t t t tF F q t+ = + −   

Where t  is the cumulative demand, tq  is the 

effective flow of particles which enters the link. With 

a simple test, we can distinguish two cases:  

• if 0tF  , then there is a (vertical) queue 

just upstream the entry point and we get: 

( )max 1min , ,
t

t t t t

loc n

F
q Q I

t
 +

 
= + 

 
 

where maxQ  is the maximal flow obtained 

for the flow-density fundamental diagram 

corresponding to the attribute 
t

nI . 

• if 0tF = , then there is no queue and the 

flow is simply given by the minimum 

between the local upstream demand t  

which is given and the local downstream 

demand t , say: 

( )min ,t t t

locq  =  

3. Computation for the following time step and 

generation of the next particle: 

The particle (n + 1) is totally generated at time 

( )1t t+   if and only if we comply to: 

tN q t N +     

At time step t, there are ( )1 N−   vehicles from the 

particle (n + 1) that remain in the fictitious buffer. 

So, we distinguish two cases: 

• If ( )1tq t N  −  , then the particle ( )1n+  

does not completely extend the node and 

we update   as follows: 

( )1

t
q t

N
 


+

− 
  

The considered particle index stays 

unchanged. 

• If ( )1tq t N  −  , then ( )1n+  has 

completely entered the link and the entry 

time is ( )1 1n nt tt + ++ =  where: 

( )
1

1

tn

N

q t


 +

− 
=


 

The position of particle (n + 1) is thus updated as 

follows: 

( ) ( )1

1 1 1 11 ,t t t

n E n n nx tV r I +

+ + + += + −   

We also update the particle index 1n n + . 

4. Final update: We compute the attribute at time 

step (t + 1): 

( )1

1 1, , ;t t

n n tI L I t t t W+

+ += +   

and finally, we itemize by updating the time step 

1t t +  and we restart the sub-routine from Step 

1. 

We note that this methodology can be directly 

applied to treat any junction-link interface as we will 

see in next Section. 

4.2.3 Internal state junction model 

We consider a point-wise junction model with an 

internal state (Khoshyaran & Lebacque, 2009) that 

is used as a buffer between incoming and outgoing 

branches of the junction. We recall that this buffer 

has internal dynamics and we can define an internal 

supply which depends on the number of stored 

particles. It assumes that the junction ( )z  has a 

physical dimension and acts as a buffer and those 

vehicles are stored before extending the outgoing 

branches. The internal state has specific attributes 

such as: ( )
z

N t  is the total number of vehicles in the 

node, ( ),z j
N t  is the number of vehicles registered 

in the node and destined to link ( )j and ( )z
I t is the 

driver attribute of vehicles stored in the node.  

Notice that the link-junction (resp. junction-link) 

interface is treated as a downstream (resp. 

upstream) boundary condition. Thus, we apply the 

algorithms described above, considering the local 

supply (resp. demand) of the buffers inside the 

junction point which are defined according to the 

number of stored particles. 
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There exists different strategies to deal with the 

assignment of particles through the junction. They 

are detailed here below. 

- Assume that we have only the information 

of assignment of particles say the matrix 

( )
,ij i j

  that describe the proportion of 

particles coming from any road i  that 

want to exit the junction on road j J . In 

that case, we consider that a particle that 

enters the junction from road i  will exit on 

road j  with a probability of  ,i j .  

- Assume that path through the junction, say 

the number of the outgoing 1Xbranch on 

which the particle n  will exit, is directly 

included in the particle attribute ( ),I t n  

and that this information does not evolve in 

time. In that case, the choice of the outgoing 

branch for particle ( )n  is straightforward. 

- Assume now that we consider a global 

network with many arcs and many 

junctions. We can imagine that the particle 

attribute ( ),I t n  encompass the origin-

destination information for particle n . This 

information can depend on time, for 

example if the particle changes his mind 

about the path according to the traffic 

states on the network. One can assume that 

we can build a reactive assignment model 

that give us the path followed by particles. 

This model can be coupled with another 

model of command, supposed to be 

governed by a traffic planning agency for 

instance. Let imagine that the central 

planners collect information on travel times 

on each arc of the network and that these 

travel times are displayed for particles that 

enter the network. Then any particle will 

select the appropriate path at each junction 

for going to their destination. 

Moreover, we can distinguish two different cases 

for describing the internal dynamics of the junction. 

Indeed, one can consider that once particles have 

entered the junction, whatever are their origins, 

they are immediately assigned to the buffer 

corresponding to their wished outgoing branch

j J . But it is also possible to consider that inside 

the junction point, any particle has a non-trivial 

travel time before to join their exit, which can be 

affected by the total number of particle inside the 

junction point or by the “physical” conflicts that can 

appear between the internal lanes of the junction 

point. 

4.3 Numerical example    

We consider a network made of 4 junctions with 4 

incoming and 4XoutgoingXroads. Each junction has 

two incoming and two outgoing links (Figure 3). The 

considered simulation site corresponds to a road 

network with two lanes. We consider for this 

numerical example the Ornstein-Uhlenbeck 

stochastic GSOM model described in section (4.3). 

 
Figure 3: Example of the network study 

Figure 4: Link density dynamics  

Figure 5: Link attribute dynamics 
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The example in (figures 4-5) shows traffic dynamics 

on the network shown in figure 3, with the interplay 

of kinematic waves (density) and contact 

discontinuities (driver attribute waves). (Figures 4 

and 5) show the dynamics of the total number of 

vehicles in the network, as well as the mean driver 

attribute and mean critical number of vehicles 

(dependent on the driver attribute) inside nodes. 

The reader can notice that our numerical method 

can accurately recapture the shock wave due to the 

congestion and then the rarefaction wave, due to 

the decrease of the upstream demand, that 

mitigates the traffic jam later on.    

5. TRAFFIC MANAGERIAL IMPLICATIONS 

Transport systems place a key role in the 

development of the economic growth of countries. 

However, it was only from the middle of the 

previous century that they have become a serious 

problem. The appearance of autonomous and 

electric vehicles and the restrictions put in place to 

limit the diffusion and impacts ofACovid-19Ain 

public transport have had particularly a widespread 

impact on people’s lives, and the way energy is used 

across entire economies. Therefore, there is a 

change in the transportation system.  The crisis has 

affected public transport (buses, trains and planes) 

nationally and internationally. It has witnessed a 

colossal increase of private vehicles on the roads. 

Unfortunately, the infrastructure of roads and 

traffic systems has not kept pace with this growth, 

resulting in inefficient traffic management. Owing to 

this imbalance, traffic jams on roads, congestions, 

and pollution have shown a marked increase. As a 

result, transport problems are becoming 

increasingly complex. This complexity was primarily 

due to the growing motorization and its 

consequences on the dramatically increasing traffic 

congestion. Indeed, traffic congestion is a critical 

societal problem due to the social - economic and 

environmental problems that it generates. Traffic 

congestion in urban road and freeway networks 

leads to a strong degradation of the network 

infrastructure and accordingly reduced throughput, 

which can be countered via suitable control 

measures and strategies. 

Thus, it appears urgent and necessary, particularly 

with the emergence of the concept of sustainable 

development, to develop short- and medium-term 

solutions to reduce these traffic congestion effects; 

which requires a growing sophistication of traffic 

management (for instance through the construction 

of new infrastructure or the public transport 

development, or the straightforward and most 

effective solution which is the infrastructure 

optimization (Lesuseur-Cazé et al., 2022)). Traffic 

modelling plays a crucial role in traffic management 

(Bara, 2021). It can be applied to plan and manage 

the traffic within certain road network (May, 1990). 

For example, making a smooth traffic at an 

intersection (Lebacque & Khoshyaran, 2005). Road 

traffic control is the only effective solution to 

optimize the efficient use of transport 

infrastructures in order to reduce costs and accident 

risks, and negative effects of pollution. 

The management of growing traffic is a major issue 

across the world. Road traffic control systems 

(freeway networks, and route guidance Intelligent 

Transportation Systems, Intelligent Traffic Signals 

Installation, selected application results, obtained 

from either simulation) have a great potential in 

offering solutions to such issues by using new 

technologies and traffic flow models. 

The development of traffic flow models; able to 

describe, explain and predict vehicle interactions is 

a precondition for the development and evaluation 

of traffic control systems and road traffic 

management solutions. Therefore, traffic flow 

modeling and numerical simulation have an 

increasingly important role in the traffic flow 

optimization by reducing traffic congestion. The 

traffic flow models-based solutions for traffic 

management and control have been categorized as 

traffic data collection solutions, traffic management 

solutions, congestion avoidance solutions, key 

strategies based on machine learning and 

computational intelligence for avoiding congestion, 

important solutions for accurately predicting travel 

time, and travel time prediction solutions. 

Principally, simulation and traffic flow models focus 

on three output values to solve traffic problems 

(Friedrich, 2015). 
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Firstly, in the traffic flows alternative routes can be 

identified based on the number of vehicles. By using 

the simulation traffic flow model, transport 

modeller can devise on how to reduce the levels of 

congestion of certain roads.  

Secondly, network element in traffic simulation 

consists of links and intersections (Barcello, 2010). 

This is related to the geometric layout of the road. 

Using appropriate simulation software and traffic 

flow model by infrastructure planner, the road 

geometric design can be changed to see how it can 

influence the current traffic situation.  

Thirdly, dynamic models can help to estimate the 

time and cost of travel (for network managers to 

adjust red lights, for example). This is especially used 

when the assessment of transport improvement is 

needed to be measured. The regional traffic planner 

can easily make a performance comparison without 

any extra cost of money and time (for example for 

travel time estimation (Princeton & Cohen, 2011), 

for speed limit changes on urban motorways using a 

first order macroscopic traffic simulation tool 

(Cohen et al., 2014), or for intelligent transport 

system Gertrude Saem (a regulation system of 

multimodal urban traffic in real time, using a 

macroscopic traffic model : Gertrude SAEM, 2018)). 

Therefore, the objective of simulation model is to 

presents a real traffic situation in to dynamic model. 

It is in this perspective that traffic flow theory 

resulted in the development of a spectrum of traffic 

flow models (sub-microscopic, microscopic, 

macroscopic and mesoscopic models). The main 

objective of these traffic flow models is to allow the 

traffic control strategies development (traffic light 

management systems (Khelifi et al., 2015), 

intelligent traffic management strategies, efficient 

management of traffic flows at intersections, 

traveler information systems, real-time monitoring 

and control systems, connected vehicles, and 

automation).  

In addition, intersection modeling and boundary 

conditions analysis are extremely important for flow 

traffic models because they are the keys to: the 

improvement of the identification and the 

calibration of traffic simulation models, the large 

and complex networks modeling, control traffic 

management applications, the understanding of 

drop in capacity.  

That's why we chose to clarify in this study one of 

the main scientific issues, which is the intersections 

traffic modeling. In this paper, we developed a 

junction model which is compatible with 

microscopic and macroscopic descriptions to 

optimize the traffic management solutions. The 

microscopic representation of traffic flow is 

particularly suited for traffic management methods, 

while staying compatible with a macroscopic 

representation allowing global evaluation. 

The key idea for conciliating both microscopic and 

macroscopic representations is to recast the 

macroscopic model under its Lagrangian 

coordinates. Indeed, the Lagrangian framework 

focuses directly on the particles and incidentally it 

allows to keep track of individual behaviors.  

6. CONCLUSION 

In this paper, we have discussed a totally new 

numerical method to deal with the generic class of 

stochastic second order macroscopic traffic flow 

models, known as the GSOM family, posed on a 

junction. The generic GSOM model is recast in the 

Lagrangian framework and we have a careful look at 

the boundaries conditions for links and junctions. 

The Godunov particle discretization (14) constitutes 

a convergent discretization for almost all 
tW  , 

and provides an intuitive description of the model 

solutions. The model described in this paper 

reproduces the variability of trajectories and 

predicts breakdown of traffic (Figure 4-5). 

The aim of this paper is to extend the stochastic 

GSOM model to intersection modeling, in order to 

check whether the model (5) predicts breakdown of 

traffic and similar phenomena. 

Moreover, this research has great potential in terms 

of improving traffic and presents real managerial 

insights with important implications. This research is 

important specifically in the context of new logistics 

challenges such as: the growing importance of using 

alternative modes of transportation (for examples: 

electric and autonomous vehicles); Covid impact on 

public transportation; …etc.  
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By the way, we highlight below some interesting 

research directions. As a future research 

perspective, we can apply our model to a real 

dataset and value it in terms of costs or traffic 

performance improvement. 

Ongoing research addresses to deduce the resulting 

stochastic properties of flow and density, in order to 

apply the model to stochastic traffic control. The 

discrete model (6) can be replaced by more complex 

time integration schemes (Runge-Kutta schemes, 

the trapezoidal scheme,…etc). Such numerical 

schemes can be justified mainly if we consider a 

source term at the r.h.s. Xin (10) which is not null, 

say ( ) 0I   or depends on r , say ( ),I r  . In the 

particular case of 0 = , explicit Euler scheme is 

very satisfying. Moreover, it is also imaginable to 

build an implicit scheme, even if it means a higher 

computational cost. 

Further perspectives which will be developed in 

future works include the study of error processes for 

model parameters and measurements as attributes 

and their use for data assimilation and model 

identification on networks. 

One another direction of research would be to 

compare the numerical results obtained with our 

monotone scheme and those obtained from the 

variational approach for GSOM models (and a 

fortiori for the LWR model : Lebacque & 

Khoshyaran, 2013) is rather complex to apply on real 

network with many links and when applied to a 

model with for example a non-triangular 

fundamental diagram, it looses the advantages of 

higher accuracy. For the future perspectives of this 

research, we can also explore the impact of the 

proposed modelling on a real case. For example, this 

impact can be expressed in terms of saved CO2 

emissions, minimised costs, improved traffic 

flexibility (Benzidia, 2012; Benzidia, 2014)... etc. 
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